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The selection of the proper coordinate system in solving any fluid flow or heat transfer 
problem is a very important consideration. A new technique of moving mesh points in 
physical space is introduced so as to reduce the error in a computed asymptotic solution 
relative to that obtained using a fixed mesh. The technique has been used to solve the simple 
viscous Burgers’ equation in one and two dimensions. Substantial error reductions are 
demonstrated. The treatment of boundary points and the effect of using different error criteria 
in generating grids are discussed. 

Coordinate system selection is an important consideration in the time asymptotic 
numerical solution of any fluid flow or heat transfer problem. In solving such tran- 
sient problems, the physical domain is usually transformed into a rectangular region 
with boundaries coincident with the physical boundaries. Once this transformation is 
completed, the transformed equations of motion are integrated until steady state is 
attained. 

Most methods of generating systems of coordinates used in numerical solutions 
involve the solution of systems of elliptic partial differential equations. In these 
methods, the physical domain boundaries are known and the coordinate mesh is 
determined initially. Generally, the geometry of the mesh is not changed during the 
computation. Probably the most well known of these methods is the one developed by 
Thompson et al. [l] in which the transformed coordinates are obtained as a solution 
of Laplace’s equation in physical space. A number of other investigators [2-41 have 
developed schemes which can be used to generate appropriate coordinate systems 
using the same general idea. 

Unfortunately, the solution of a separate elliptic equation is not conveniently 
included in the solution of a time-dependent set of equations. Hindman et al. [S ] 
solved the two-dimensional time-dependent Euler equations with a truly adaptive grid 
scheme. The grid motion in time was generated by taking the time derivative of the 
governing differential equations of the coordinate mapping which was the same as 
that developed by Thompson. This provided the necessary grid speed equations which 
were then integrated to obtain the grid motion as a function of time. Hindman’s work 
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did not consider techniques which might be used to modify the location of the interior 
points depending upon the local solution, The interior point motion depended solely 
upon boundary motion. 

A technique for locating mesh points according to local flow information was 
presented by Dwyer et al. [6]. This technique is similar to that used by Olsen [7] and 
involves redistributing the mesh points at the end of any number of integration steps. 
This method does not permit a simple time integration of a differential equation 
similar to the equations of gas dynamics for the motion of the mesh points. It is the 
purpose of this paper to introduce a new technique which provides a simple way of 
moving the mesh points in physical space and reduces the error in the solution 
relative to that obtained using a fixed mesh. 

Pierson and Kutler [8] have also worked on the generation of grids which 
minimize error, but their technique involves the solution of a minimization problem. 
The extension of such a method to higher dimensions with the accompanying increase 
in the number of mesh points is not feasible due to the large amounts of computer 
time necessary to solve minimization problems. The method to be discussed in this 
paper is very simple in application and takes only a fraction of the time necessary to 
solve a minimization problem. 

THE METHOD 

To describe the basic idea, we consider transient problems in one space dimension. 
Let the physical space coordinates be x and t and let the computational space coor- 
dinates be < and r where 

We require the calculation of the absolute value of the derivative (Ius]) of some 
representative physical quantity (u) such as velocity, pressure, or temperature and the 
average value of the same derivative (]u,]~“) for all mesh points. Given a certain 
number of grid points, we assume that truncation error can be reduced by allocating 
a number of points to the regions of large gradients and fewer points to the regions of 
small gradients. A relocation of points in order to reduce error can be carried out 
very easily using the equispaced grid in the computational domain. This can be 
achieved if points at which ]uI] is larger than ] Us/,, attract other points and points at 
which ] u~( is smaller than I uIJav repel other points. In other words, every point 
induces a velocity at every other point, the magnitude and direction depending upon 
the local “excess gradient.” It is logical to assume that the further a point A is from a 
point B, the smaller the effect of point A on B. This suggests that a l/r” law should 
be used. From the above considerations, it is possible to write 
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i = 2, 3 ,..., (N - I), (1) 

Cxr)i = (5iL /(Cx)i 3 (2) 

where i is the point at which the velocity is being determined, N is the total number 
of grid points, ri,j is the distance between points i and j in (C, r) space and K and n 
are constants. 

Strong analogies can be found between the present formulation and treating the 
grid points as point electrical charges whose individual charges are proportional to 
the local “excess gradient.” The charges move so as to minimize the quantity 

the minimum value of E being zero. 
The collapsing of two computational space points into one physical space point is 

not possible for two reasons: 

(a) The driving force g, 

g= lull- I~l/aV (3) 

becomes negative when two points get very close and, hence, the points begin to repel 
each other. 

(b) The term C, in Eq. (2) gets very large as two points get very close. Hence, 
for a finite (c$)~, (x~)~ tends to zero; i.e., the closer two points get to each other, the 
more difficult it becomes for them to move toward each other. 

In the above discussion the driving force g is defined in terms of local and average 
first derivatives. A better formulation would be one in which g is defined in terms of 
quantities which are more representative of truncation error. The appropriate choice 
depends upon the order of the method being used and the problem itself. The flex- 
ibility in choosing the driving force and the quantity to be minimized is a particularly 
attractive feature of the current scheme. 

The quantities (&), and [ 1 uI( - ] uI I,,]/ r” in Eq. (1) are physically unrelated and 
hence the scaling factor K is necessary to equate them. The factor K is chosen such 
that the velocity at any point does not exceed a preset maximum [ (&)7]max. Hence, in 
order to calculate K, we calculate the grid speed at every point assuming K = 1 and 
then calculate K as 

581/43/2-IO 
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The grid velocity at every point is now resealed as 

As the calculation proceeds, []u[] - ]u&] t a every point becomes smaller and hence 
K becomes larger in order that ](Qr] t a some point in the grid achieves the value 
[(tiLlmax* The restriction of K to some preset maximum K,,, results in grid 
velocities that die out quickly. Hence the convergence of the grid to a steady-state 
configuration can be obtained by specifying a maximum value for K(K,,,). A 
mathematical proof of convergence has not been attempted for this type of 
convergence because in most practical problems the grid point velocities are 
exponentially damped out for reasons given later in this section. 

The constants K and K,,, together determine the grid speed. When K is less than 
K max 7 the grid speed is determined by K alone and when K is greater than K,,,, the 
grid speed is determined only by K,,,. At present these constants are chosen 
empirically. In choosing these constants one should bear in mind that very large 
values of K,,, result in grid oscillations which in turn result in longer convergence 
times, and very small values of K,,, result in low grid speeds and hence, once again 
longer convergence times are observed. The constant K is calculated by knowing the 
maximum velocity that any point can achieve in the computational space [(Qrlmax. 
The rules that govern the choice of [(<i)r]max are the same as those that govern the 
choice of K,,,. 

The determination of local truncation error involves the calculation of higher-order 
derivatives. For example, when a second-order method is used to calculate the 
solution to a first-order differential equation, a measure of the local truncation error 
inluces includes the third derivative of the dependent variable (u). Since the solution 
is O(dx*) accurate, the calculation of u,,,, which involves a division by Ax’, is 
questionable. Hence we use an approximation to the error which includes only lower- 
order derivatives. This approximation often results in excessive stretching in some 
regions. This phenomenon can be prevented by prescribing the minimum and 
maximum values for the Jacobian of the transformation (J) at every point. Grid point 
velocities can be damped out exponentially as the limits of J are approached. 
Specifying limits for J introduces further empiricism into the problem. However, this 
cannot be avoided until better methods of evaluating local truncation error are 
developed. 

A variation of the constant n in Eq. (1) between 1 and 8 did not make any 
difference in the final grid in the one-dimensional case studied but did make a small 
difference in the two-dimensional case. The number of iterations for convergence 
increases slightly when larger values of n are used. However, larger values of n imply 
a smaller range of influence for any given point. Consider a value of n, 

When r = 2, 

n = 2/lag(2). 

l/r’ = IO-*. 
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This implies that only points adjacent to a given point make a significant 
contribution to the velocity of that point. Hence, Eq. (1) becomes 

(C),-KlluSli+l-Iulli-l}. (4) 

The use of Eq. (4) instead of Eq. (1) greatly speeds up the grid generation process. 

Extension to Multidimensional Problems 

The method can be extended to problems in two and three space dimensions 
without any difficulty. In particular, for a problem in two space dimensions, let the 
physical coordinates be given by (x, y, t) and the computational coordinates by 
(t, rl, ~1 where 

s = t, 

r = &, Y, th 
v = rl(x, Y, t). 

We now require the calculation 1~~1 and Ju,I for every point and l#Ilav for every row 
of points and Iu,,I,, for every column of points as in Fig. 1. The grid speed equations 
are given by 

(c$i,j),=Kl 5 [ 2 [l+pv,l _ if1 rlG-l&l 1, 
/=I k=it 1 k=l 

(r,,j>r =K2 k$, [ 5 

l=j+ I 

b,IkJ;b&~kl -jfl [~“~lkJ;Iu~iavkl 1, 

I=1 
(5) 

I = j/(i - k)* + (j - E)*. 

where K, , K, and n are constants, N is the number of points in the < direction and M 

5 - CCMPUTATIONAL COORDINATE 

FIG. 1. Computational space. 
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is the number of points in the r7 direction. The values of K, and K, can be determined 
by wcWw [(Ti,j>,lmax and [(Vi,j)TImax~ respectively. Grid convergence can be 
achieved by specifying (K,),,, and (K2)max as in the one-dimensional case. 

We alse have the relationships 

(C,jh = (text + ty Yr)i,j, 
(6) 

which yield 

(Vi,j)z = (Vxx7 + Vy Y*>i,j 

tx 1 = l(Vy1i.j (li,j>, - (ry>i,j (Vi,jLl 
T i,l J 

3 

(7) 
cy 1, = [(tx)i,j (Vi,jL - (rlx1i.j (C,j),l 

T I,J J 
3 

J=Lr,-sty. 

From Eq. (7) it can be seen that the collapsing of mesh points and the overlapping of 
grid lines are again prevented as in the one-dimensional case. 

Points lying along a constant v line can be made to move tangential to this line by 
specifying (v~,~)* to be zero for all these points. A similar procedure can be adopted 
for constant < lines. This facilitates the movement of points along surface boundaries, 
etc. However, this type of unnatural constraint on the velocity of points leads to a 
slightly distorted grid as shown in Fig. 2. Consider a one-dimensional problem in 
which the quantity [I ~~1 - ( aIlav] is almost constant in the region of the left boundary. 
If we were to calculate the velocity of the second grid point using Eq. (1) with K = 1 
and n = 1, 

X - PHYSl‘AL COORDINATE 

FIG. 2. Grid generated using aperiodic boundaries. 
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and we get 

However, the value of (&)* must be zero since it is in a constant [[us/ - 1~~1~~1 
region. This problem can be overcome by assuming periodic boundary conditions, 
i.e., a set of pseudo points outside the left boundary such that 

and using the pseudo points also in calculating grid speeds. This also results in the 
requirement that 

The same considerations apply to the right boundary. A similar situation exists in 
two dimensions. A natural way of making points move tangential to boundaries is to 
specify periodic boundaries and use pseudo points outside the region of interest to 
calculate the grid speed. This procedure of calculating the grid speed results in the 
grid shown in Fig. 3. The distortions present in Fig. 2 are absent in Fig. 3 and the 
grid is seen to be smooth and uniform. The grids shown in Figs. 2 and 3 were 
generated using a known solution to the two-dimensional transient, linear, viscous 
Burgers’ equation. 

RESULTS 

The first problem solved using the present grid generation technique was the one- 
dimensional unsteady viscous Burgers’ equation 

> 

0.2 

0.2 0.4 0.6 0.6 1.0 

X - PHYSICAL COORDINATE 

FIG. 3. Grid generated using periodic boundaries. 
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with the initial condition 

u(O,x) = 1, x=0 

= 0, O<x<l, 

and the boundary conditions 

u(t, 0) = 1, 

u(t, 1) = 0. 

This problem has the steady-state solution 

u=u^tanh +1 -x)1, 

where 

(9) 

(10) 

(11) 

Re = 11,~ (12) 

and u” is the solution of the equation 

The slope of the steady-state solution at the right end increases and that at the left 
end tends to zero as Re increases. 

G-1 
- = exp[-liRe]. u^+l 

0 ADAPTIVE GR 

X - PHYSICAL COORDINATE 

FIG. 4. Comparison of errors for the one-dimensional viscous Burgers’ equation, Re = 1 .o. 
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MacCormack’s [9] method was used to integrate Eq. (8) and three point central 
differences were used to calculate the metrics of the transformation. The stability 
limit for MacCormack’s method for this problem was determined using the empirical 
formula given by Tannehill et al. [lo]. Equation (4) was used to determine grid point 
velocities. 

Results are presented for various values of Re in Figs. 4-8. In all cases, the steady- 
state results using an adaptive grid and those obtained using an equispaced grid are 
compared with the exact solution. In Fig. 4 results for Re = 1 are shown. The errors 
are very small (<0.04 %) in both cases but the peak error without an adaptive grid is 
about 1.82 times the peak error with an adaptive grid. In Fig. 5 results are presented 
for Re = 2. The ratio of the peak errors is now about 4.90 and a significant 
improvement in accuracy is seen. However, in Fig. 5, the adaptive grid shows a 
slightly larger error in the region 0 < x < 0.2. This is due to the fact that the second 
point in the grid has moved to the right a substantial distance resulting in a higher 
error in this region. 

Figure 6 presents results for Re = 3. The inaccuracy in estimating local truncation 
error as equal to ] Us] is apparent in this case. The errors in the terms uI and ulI are 
better approximated as 

A rapidly varying xI in the grid results in large values of xII and hence in larger 
errors in the computed solution. The rapid variation of x[ can be prevented as 
discussed earlier by limiting the change in Jacobian at every point. A natural way of 
preventing excessive stretching in this particular problem is to define C as 

zi=fu + (1 -f)(l -x), O<f< 1, (16) 

and the driving force g as 

(17) 

Note that even though the definition of I is problem dependent, the idea of exponen- 
tially damping out grid velocities as the Jacobian of the transformation approaches a 
prescribed limit is problem independent. It just happens that there is an easier way of 
preventing excessive point motion in this case. The error curve obtained for Re = 3 
and f = 0.7 is also shown in Fig. 6. A substantial decrease in error is seen, the ratio 
of the peak errors being about 3.80. Figures 7 and 8 present results for Re = 5 and 
Re = 10, respectively. In both cases a smoothed form of the solution as given by 
Eq. (16) is used. The ratio of peak errors is about 2.23 for Re = 5 and 2.13 for 
Re = 10. Figure 9 shows the transformation obtained for the case Re = 3, f = 0.7. 
The uniform nature of the transformation is apparent. 
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0 
0.0 

0 NON-ADAPTIVE GRID 
0 ADAPTIVE GRID (f = 1.0) 

0.2 0.4 0.6 0.8 1 
X PHYSICAL COORDINATE 

FIG. 5. Comparison of errors for the one-dimensional viscous Burgers’ equation, Re = 2.0. 

0.2 0.4 0.6 0.8 
X - PHYSICAL COOINATE 

FIG. 6. Comparison of errors for the one-dimensional viscous Burgers’ equation, Re = 3.0. 
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I- 

I& 

1.0 

o NON-ADAPTIVE GRID 
o ADAPTIVE GRID (f z 0.5) 

X - PHYSICAL COORDINATE 

FIG. 7. Comparison of errors for the one-dimensional viscous Burgers’ equation, Re = 5.0. 

0 NON-ADAPTIVE GRID 
D ADAPTIVE GRID (f - 0.4) 

X - PHYSICAL COOFSINATE 

FIG. 8. Comparison of errors for the one-dimensional viscous Burgers’ equation, Re = 10.0. 
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0.0 0.2 0.4 0.6 0.8 1.0 
F - COMF'UTATIONAL COORDINATE 

FIG. 9. Converged grid for the one-dimensional Burgers’ equation. 

An equivalent form of Eq. (14) is given by 

e(z.4,) N -~x~p,, - ~x;u,,,. (18) 

Assuming xII to be small we get 

e(u,) = --ix; u,,. . (19) 

Since the evaluation of u,,, using computed values of u is problematic, we make one 
further approximation 

which yields 

I4 K l~sl~xI (21) 

instead of the much simpler form Jel CC lull which was used earlier. Equation (21) 
suggests a driving force of the form 

g= b&xl - I~,law. (22) 

Results of using such a driving force for the case Re = 3 are presented in Fig. 10. The 
errors obtained are comparable to the ones obtained using an optimal f: However, the 
advantage in using this new form of the driving force lies in eliminating the 
empiricism required in determining the optimal f. Similar results were obtained for all 
Re < 5.0. Excessive stretching was once again observed for higher values of Re, 
indicating the inaccuracy in estimating the error. The analysis and results presented 
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FIG. 10. Comparison of errors for the one-dimensional viscous Burgers’ equation, Re = 3.0. 

in this and the preceding paragraph show that the method is limited only by the 
accuracy with which the total truncation error at a point can be estimated. 

The second problem solved was the two-dimensional unsteady, linearized, viscous 
Burgers’ equation 

u, + u, + uy = Pu(~,, + uy,) 

in a square domain with the initial conditions 

(23) 

u(x, 0,O) = 1 + 
[ 1 - exp(Re(x - l))] 

[ 1 - exp(-Re)] ’ 

u(0, y, 0) = 1 + [1 - expW(y - I))1 
[ 1 - exp(-Re)] ’ 

U=l otherwise, 

where 
Re = l/cl, 

and the boundary conditions 

(24) 

(25) 

u(x’ O’ ‘I= ’ + 
[ 1 - exp(Re(x - l))] 

[l - exp(-Re)] ’ 
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‘(O’ ” ‘) = ’ + 
P -e&W - WI 

[ 1 - exp(-Re)] ’ 
(26) 

u(x, 1, t) = 1, 

a(l,y,t)= 1. 

This problem has the steady-state solution 

u=l+ 
[ 1 - exp(Re(x - l))] [ 1 - exp(Re(y - l))] 

[ 1 - exp(-Re)12 * (27) 

MacCormack’s method was used to integrate Eq. (23) and three point central 
differences were used to calculate the metrics of the transformation. To prevent 
excessive stretching of the grid a smoothed version of the solution (u) 

u = fu + (1 -f)(4 - x - y)/2, o<.f-<L (28) 

is used to calculate the driving force. Equations (5) were used to obtain grid point 
velocities. 

Figure 11 shows the grid obtained for Re = 5 and f = 0.3. The error is calculated 
at the points shown in Fig. 11 and a linear interpolation is used to calculate the error 
at the points corresponding to the equispaced grid. The results are presented in 
Figs. 12-15, at each y station. The adaptive grid yields slightly higher errors in the 
low gradient region as in Fig. 12 and gradually progresses to much lower errors in 
the high gradient regions as in Fig. 15. The increases in accuracy are not as high as 
in the one-dimensional case, the main reason being the inaccuracy in establishing the 
local truncation error. One complication that exists only in two- and three- 

X - PHYSICAL COORDINATE 

FIG. 11. Converged grid for the two-dimensional Burgers’ equation. 
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! 0 NOW-ADAPTIVE GRID 

4 ADAPTIVE MID 
0.8 

0.0 0.2 0.4 0.6. 0.8 1.0 
X - PHYSICAL CWROJNATE 

FIG. 12. Comparison of errors for the two-dimensional viscous Burgers’ equation, Re = 5.0, y = 0.2. 
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FIG. 13. Comparison of errors for the two-dimensional viscous Burgers’ equation, Re = 5.0, y = 0.4. 

X - PHYSICAL COORDINATE 

FIG. 14. Comparison of errors for the two-dimensional viscous Burgers’ equation, Re = 5.0, y = 0.6. 
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FIG. 15. Comparison of errors for the two-dimensional viscous Burgers’ equation, Re = 5.0, y = 0.8. 

dimensional problems is the appearance of cross derivative terms in any estimate of 
the local truncation error. The absence of cross derivative terms in the present 
formulation of the grid generation scheme is felt particularly at the point x = 0.8, 
y = 0.2 in Fig. 12. This point has a large value of U, and a small value of uY resulting 
in mesh clustering only in the x direction. However, the terms uXYY and uXXY are by no 
means small and hence due to large dy in this region give rise to large errors. Future 
work with two-dimensional problems will require that the influence of cross derivative 
terms be included in the generation of grids. 

Time Requirements 

For an explicit method, the number of integration steps required for convergence is 
generally greater with an adaptive grid because of the lower values of maximum 
allowable time steps associated with mesh clustering. The ratio of the number of steps 
required with and without an adaptive grid goes all the way from 3.4 for Re = 10 to 
1.4 for Re = 1 in the one-dimensional case and takes on a value of 2.3 in the two- 
dimensional case. However, time estimates will be given only on a per integration 
step basis. In the one-dimensional case the generation of the grid and recalculation of 
the transformation metrics take less than 10 % of the time taken for integration. In 
the two-dimensional case, the generation of the grid takes 25 % and recalculation of 
metrics takes 70 % of the time taken for integration. One of the reasons for the 
excessive time taken for the calculation of metrics is the presence of second 
derivatives like &.,, ryY, qXX, and v,,,,, all of which need to be determined numerically. 
The absence of these second derivatives greatly speeds up the calculation of metrics. 
Furthermore, if the problem requires the recalculation of metrics even without an 
adaptive grid, as in shock fitting programs, the time required to use an adaptive grid 
becomes very attractive. It must also be remembered that the additional time required 
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in this case is high because the equation being solved is very simple. Since the time 
for grid generation remains about the same in far more complicated problems, the 
extra time needed for grid generation will be a much lower percentage of the total 
computer time required. 

CONCLUDING REMARKS 

A method of generating grid structure in time asymptotic problems has been 
presented. This required use of a coordinate transformation relating the physical 
plane to the computational plane where the equations governing the physical process 
under investigation are integrated. 

Results presented show significant error reduction for the one-dimensional 
nonlinear viscous Burgers’ equation and the two-dimensional linear viscous Burgers’ 
equation. Error reduction was achieved by imparting a velocity to each grid point in 
the physical plane which depended upon both local gradient information and 
boundary motion. The resulting simple grid point velocity equations were then 
integrated in time with the governing equations yielding updated physical grid coor- 
dinates. 

Extension of the present work using other measures of local error are important. In 
order to produce better computational grids, significant research should be done in 
establishing better methods for estimation of both local and global errors of solutions 
computed using finite difference techniques. 

APPENDIX: NOMENCLATURE 

e measure of local truncation error 

f” 
measure of total error 
constant used for smoothing solution 

F 
driving force 
Jacobian of transformation 

K,K, ,Kzv Fhn,x~ (KJmax~ WAnax constants 
M number of grid points in the q direction 
n exponent 
N number of grid points in the r direction 
r distance between points in the computational domain 
Re Reynold’s number (defined as l/p) 
t physical time 
u representative physical quantity 
Ii smoothed form of u 
u^ constant appearing in the steady-state solution of Burgers’ equation 
X physical coordinate 
Y physical coordinate 
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J 
computational coordinate 
constant 

P viscosity term in Burgers’ equation 
r computational coordinate 
t computational time 
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